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SUMMARY

A method for efficient implementation of a combined spectral finite difference algorithm for computation of
incompressible stratified turbulent flows on distributed memory computers is presented. The solution technique is
the fractional step method with a semi-implicit time advancement scheme. A single-programme multiple-data
abstraction is used in conjunction with a static data-partitioning scheme. The distributed FFTs required in the
explicit step are based on the transpose method and the large sets of independent tridiagonal systems of equations
arising in the implicit steps are solved using the pipelined Thomas algorithm. A speed-up analysis of a model
problem is presented for three partitioning schemes, namely unipartition, multipartition and transpose partition. It
is shown that the unipartitioning scheme is best suited for this algorithm. Performance measurements of the
overall as well as individual stages of the algorithm are presented for several different grids and are discussed in
the context of associated dependency and communication overheads. An unscaled speed-up efficiency of up to
91% on doubling the number of processors and up to 60% on an eightfold increase in the number of processors
was obtained on the Intel Paragon and iPSC=860 Hypercube. Absolute performance of the code was evaluated by
comparisons with performance on the Cray-YMP. On 128 Paragon processors, performance up to five times that
of a single-processor Cray-YMP was obtained. The validation of the method and results of grid refinement
studies in stably stratified turbulent channel flows are presented.# 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

The majority of geophysical (oceanic and atmospheric) flows are partially turbulent and density-
stratified. Stratification makes stratified turbulent flows markedly different from unstratified ones.
One of the most important effects of stratification is on mixing and entrainment, processes that play
an important role in the exchange of energy and gases between the atmosphere and the ocean.
Consequently, better understanding of this phenomenon is essential for accurate modelling of the
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oceanic mixed layer. The overall goal of this work is to study the effects of stratification on turbulent
channel flow via direct numerical simulation (DNS) and large-eddy simulation (LES) based on the
incompressible Navier–Stokes and scalar transport equations.

DNS is an important tool in the fundamental study of turbulence; its range of applicability is
closely tied to the performance of state-of-the-art supercomputers. Turbulence has been identified as
a grand challenge problem that could benefit significantly from the advent of massively parallel
machines, which will be key enabling agents in the endeavour to simulate ever more complex flows.

The first parallel simulations of incompressible turbulent flows were performed by Moin and Kim1

on an SIMD architecture (ILLIAC IV computer). Since then, simulations of viscous incompressible
flows have been performed on a variety of massively parallel machines. Pelz2 implemented the
Fourier pseudospectral method for simulation of incompressible isotropic turbulent flows on the
NCUBE=1 Hypercube. The only major operations requiring parallelization were the multi-
dimensional FFTs. He obtained efficiencies of up to 83% on a 1024-node NCUBE=1 Hypercube.
A pseudospectral Navier–Stokes solver for DNS of incompressible homogeneous turbulent flows was
also developed by Jacksonet al.3 on the iPSC=860 Hypercube. They computed the parallel
multidimensional FFTs using a transpose method and obtained speeds comparable with the Cray
YMP on a 32-node system. Parallel spatial DNS of a transitional boundary layer on the iPSC=860
Hypercube was reported by Joslin and Zubair;4 performance of roughly 153 MFLOPS on a 32-node
iPSC=860 was obtained. More recently, Hanebutteet al.5 have implemented spatial DNS on the IBM-
SP1 and have achieved several-fold improvement in overall performance over the iPSC=860
implementation. Eidson and Erlebacher6 describe the implementation of a fully load-balanced
tridiagonal solver on the Intel Touchstone Delta for DNS of compressible isotropic turbulence.

High-resolution (5123 grid points) spectral simulations of homogeneous turbulence have been
carried out by Chen and Shan7 on the CM-2. A notable implementation of spectral methodology is
the recent high-performance Fourier–Chebyshev simulations of three-dimensional thermal convec-
tion on the CM-5 performed by Cortese and Balachandar.8 Perot9 and Tafti10 have reported direct
simulations using finite volume and finite difference methods on the CM-5. In a recent review article,
Fischer and Patera11 present a detailed summary of the past and current work in the area of simulation
of viscous incompressible flows on massively parallel computers. Additional work on implementa-
tion of computational fluid dynamics algorithms on parallel computers may be found in References
12 and 13.

In this paper we present the implementation of a hybrid spectral finite difference algorithm on the
Intel iPSC=860 Hypercube and Paragon computers for simulation of incompressible stratified
turbulent channel flows. The discretization is based on Fourier spectral methods in the two horizontal
directions and finite different methods in the vertical direction. Spectral methods have now become a
method of choice for simulation of turbulent flows in simple geometries owing to their high order of
accuracy.14 The high global accuracy of Fourier methods was the main motivation for their use in the
present application.

The use of finite difference methods in the vertical direction was motivated mainly by the desire to
implement other boundary conditions and to simulate flows with sharp density interfaces, such as
two-layer flows which have almost discontinuous interfaces. Almost all oceanic flows and large water
bodies exhibit a density profile with a steep gradient called thethermocline;15 spectral methods are
ill-suited to such flows as they would exhibit the well-known Gibbs phenomenon14 around the density
interface.

The scheme used in the present work requires distributed two-dimensional FFTs as well as parallel
stencil-type operations, which require very different communication patterns. The solution algorithm
also leads to different types of data dependencies at various stages and requires different (and
mutually conflicting) implementation strategies. The choice of appropriate partitioning scheme is
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thus crucial in obtaining optimal performance for all the stages of the algorithm. A performance
model is developed for a problem which is representative of the solution algorithm for channel flow.
The performance model is then used to evaluate the suitability of various partitioning schemes
applied to this problem. The partitioning analysis presented here is general and carries over to other
message-passing computers.

One of the objectives of this work was to develop a high-performance scalable code that can be
used efficiently for both simulation on small problem sizes (such as the ones used in large-eddy
simulations) as well as large grid sizes typical of direct simulations. Accordingly, a scalability study
over a large range of problem sizes and processor configurations is presented to establish the
efficiency of the implementation. We begin by presenting the numerical method in Section 2,
followed by a brief description of the architecture of Intel parallel computers in Section 3. The
parallel implementation is presented in Section 4 and the speed-up analysis is given in Section 5. The
code validation and grid refinement results are included in Section 6. Performance results and
discussions are presented in Section 7. Finally, some conclusions are drawn in Section 8.

2. NUMERICAL METHOD

The flow geometry is indicated in Figure 1; the computational domain is�0;Lx� � �0;Ly� � �ÿh; h� in
the x-, y- and z-directions respectively. The governing equations of motion for an incompressible
Boussinesq fluid in the channel are the Navier–Stokes and scalar transport equations (in non-
dimensional form)
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where Ret;Pr and Rit are the Reynolds, Prandtl and bulk Richardson numbers respectively. The
equations have been cast in the variable viscosity and diffusivity form (n* and a* can be both
position- and time-dependent) in order to simulate flows with non-uniform properties. The density
field is expressed as

r � r0 � r*; �4�

Figure 1. Schematic diagram of channel flow

HYBRID SPECRAL FINITE DIFFERENCE SIMULATIONS 1131

# 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL24: 1129–1158 (1997)



wherer0 is the reference density;r*�x; y; z; t� is further decomposed asr* � rb�z; t� � rf �x; y; z; t�.
Here rb � hr*i is the instantaneous plane-averaged density, from which we can extract a time-
independent linear background densityrlin, defined asrlin � r0 � rB ÿ 0�5Dr�1 � z=h�, whererB
andrT are the fixed densities at the top and bottom walls respectively andDr � rB ÿ rT is the initial
density difference between the two walls.

Velocities have been scaled by the initial friction velocityu0
t , lengths by the channel half-depthh

and density perturbations byDr. With these scalings the definitions ofRet;Pr andRit become

Ret � u0
th=nm; Pr � nm=am; Rit � Drgh=r0�u

0
t�

2
: �5�

The form of the buoyancy term in the momentum equation (2) reflects the fact that the linear portion
of the background density field accounts for hydrostatic pressure variation. The flow is driven by a
fixed streamwise pressure gradient, accounted for by the termdi1 in the momentum equation (2). For
brevity and notational convenience, from here on we shall drop the subscript asterisk onr* and
simply denote it asr.

The non-linear terms (hereafter represented ashi) can be expressed in different forms, namely the
advection, divergence, rotational or skew-symmetric form.16 In the present simulations the skew-
symmetric form
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was used. Zang17 showed that in incompressible flows this form is more accurate than the rotational
form and also preserves conservation properties in the semidiscretized equations.

The spatial discretization is a mixed spectral finite differences method with Fourier expansions in
the periodic directions (x andy) and second-order finite differences in the vertical direction (z). The
mesh is Cartesian and non-uniform in the vertical direction and uniform in the horizontal directions.
Hyperbolic tangent stretching1 is used in thez-direction to cluster more grid points near the solid
boundaries in order to resolve the fine-scale structures close to walls. The co-ordinate of thekth
vertical grid point is

zk �
1
a

tanh�xk tanhÿ1 a�; xk � ÿ1 �
2k

Nz
; k � 0; . . . ;Nz: �8�

In the above,Nz � 1 is the number of grid points in the normal direction anda � 0�98346 was used,
following Moin and Kim.1 A staggered grid (see Figure 2) is used in the wall-normal direction. The

Figure 2. Staggered grid inz-direction
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velocity components and scalar are defined at full-grid points while the pressure is defined at half-grid
points. The continuity equation is enforced at pressure nodes while the momentum and scalar
equations are enforced at velocity nodes or cell edges. Linear interpolation is used to transfer
information between the half-grid and full-grid points. The series representation for the primitive
variables is

u�x; y; z; t� �
P

Nx=2ÿ1

kx�ÿNx=2

P
Ny=2ÿ1

ky�ÿNy=2
ûkx;ky

�z; t� ei�^kxx�^kyy�
; �9�

which is the Fourier series representation;^kx � 2pkx=Lx and ^ky � 2pky=Ly are the wave numbers in
the x- and y-directions respectively. The numbers of grid points in the horizontal directions are
denoted byNx and Ny. The pressure and scalar also have similar representations. Henceforth the
subscriptskx andky will not be written explicitly unless necessary; a hat will indicate a quantity in
Fourier space.

The aliasing errors arising in the pseudospectral treatment of non-linear terms are removed using
the 2

3 rule. While the2
3 and3

2 rules are equivalent, on distributed memory computers the2
3 rule can be

implemented locally with no interprocessor communication whereas the3
2 rule requires interprocessor

communication when distributed FFTs are performed, which is the case in the present
implementation (discussed in the next section). Thus on these architectures the2

3 rule is preferable
for de-aliasing of terms treated pseudospectrally.

The time advancement scheme is of mixed type: Crank–Nicolson for the vertical viscous diffusion
arising from the molecular and the horizontally averaged subgrid-scale eddy viscosity* (in large-eddy
simulations) and RK3 (Runge–Kutta) for the non-linear, buoyancy (in the vertical momentum
equation) and horizontal viscous terms. The pressure term is advanced in time using the backward
Euler scheme since this scheme enforces the incompressibility constraint at the new time step. The
method is formally second-order-accurate in time (for the velocity and scalary), but use of the RK3
scheme allows a larger time step than that for second-order explicit schemes. An analysis of the linear
advective model problemz results in the following condition on the time step for the RK3 scheme:
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In our simulations the time step was chosen such thatCFL was in the range 0�8–1�25. The adequacy
of the temporal resolution was ensured by requiring that the time step be several times smaller than
the Komogorov time scale at this Reynolds number. This was found necessary by Choi and Moin19 in
order to perform time-accurate computations of turbulent channel flow.

The solution technique is based on the fractional step method originally developed by Chorin20 and
Temam.21 Since then, many variants have been developed.18,22–24The variant used here is similar to
the one described in References 22 and 23. In this method, first, intermediate velocities which do not
satisfy mass conservation are computed using the momentum equations (without the pressure term)
and subsequently a pressure correction is applied to compute the new velocity field that satisfies both
the continuity and momentum equations. The boundary conditions for the intermediate velocities are
computed using the Leveque–Oliger splitting method. Mathematically the algorithm can be broken

* In the present work the dynamic subgrid-scale model has been used; see Section 6.
y The order of accuracy of pressure is one order lower than that of velocity.18

z Assuming that the23 de-aliasing is applied in the horizontal directions.
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into three stages: the first stage is the calculation of the terms that will be treated explicitly, i.e. the
explicit right-hand side,

rl
v � glDtNl � 1 �
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2
1
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; �11�

the second stage is the velocity step (solution of the Helmholtz equations for the intermediate
velocity),

1 ÿ
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and the third stage is the solution of the pressure Poisson equation followed by pressure correction,
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The RK3 substeps are denoted byl. At the end of the third RK3 substep the solution at the new time
level n� 1 is vn�1

� vl. For the first substep we have thatvlÿ1
� vn. In the above,G;DT andLv are

the discrete gradient, divergence and vertical second-derivative operators respectively.nv is the
variable portion of the viscosity andh i represents averaging over the horizontal planes.f is the
pseudo-pressure related to the actual pressure by
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The boundary conditions have already been incorporated in the discrete matrix operators.
A low-storage RK3 scheme with the following parameters (for the three stages) has been chosen in

the present work:25
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HereH represents the non-linear, buoyancy and horizontal viscous terms.
Performing the Fourier transform of equations (12)–(14) and using the orthogonality properties of

the Fourier polynomials, we obtain a set of one-dimensional equations for the Fourier coefficients (for
each wave number pairkx; ky). Performing a second-order finite difference discretization of these
equations results in the tridiagonal system of linear equations

ÿalDthnik�a2�k�
^

~v�kÿ1 � �1 ÿ alDthnik�b2�k ��
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~v�k ÿ alDthnik�c2�k�
^

~v�k�1 � �r̂v�k; �17�

which can be inverted efficiently using Gaussian elimination. In the above,hni � 1=Ret � hnvi is
evaluated at time levell ÿ 1; �a2�k , �b2�k and �c2�k are the coefficients (at pointzk) arising from the
second-order discretization ofLv. The superscript indicating the time level on�^~vkx;ky

�k has been
dropped.

The Poisson equation for pressure (equation (13)) is derived using the continuity equation. In
discrete form the continuity equation in Fourier space is

i^kxûkÿ1=2 � i^kyv̂kÿ1=2 �
ŵk ÿ ŵkÿ1

Dzk
� 0; k � 1; . . . ;Nz; �18�
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whereûkÿ1=2 andv̂kÿ1=2 are related to the values at full-grid points* andDzk � zk ÿ zkÿ1. Substitution
of the �x; y; z� components of equation (14) in the above equation leads to equation (13). In Fourier
space the discrete operators in this equation are as follows (the superscriptl indicating the RK3
substep has been dropped):

dDTG�f� � �d1�k
^fkÿ3=2 � �d2�k

^fkÿ1=2 � �d3�k
^fk�1=2; �19�
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The coefficients are as follows (fork � 2; . . . ;Nz ÿ 1� :
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At k � 1 (lower boundary),
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and atk � Nz (upper boundary),
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In the above equations,Dzkÿ1=2 � zk�1=2 ÿ zkÿ1=2 and the interpolation operators are defined as
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* Recall that linear interpolation is used to transfer information from full-grid points to half-grid points andvice versa.
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Note that since the pressure is calculated at the interior points only, no boundary conditions need to
be specified for it. The right-hand side of the pressure equation, however, contains the desired
boundary conditions on the intermediate velocity and normal velocity (at the end of the full step,
(14)). The equations for the pressure are singular forkx � ky � 0, reflecting the fact that the pressure
is determined only to within an arbitrary constant, specified by enforcing the mean value of the
pressure next to the bottom wall (i.e. by arbitrarily setting^f�z1=2; t� � 0 for kx � ky � 0�.

The scalar equation is also solved in two stages:

rl
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Here ha
r
vi represents the plane-averaged variable scalar diffusivity andNl

r represents the RK3
temporal discretization of the non-linear and horizontal diffusion terms in ther equation. After
performing Fourier transform and finite differencing, equation (36) also reduces to a tridiagonal
system of equations for each horizontal wave number pair. These are inverted in a similar fashion to
equations (18). Both Neumann and Dirichlet boundary conditions (atz � �h� can be implemented in
a straightforward manner.

3. ARCHITECTURE OF iPSC=860 AND PARAGON

The Intel parallel computers are based on a distributed memory, message-passing MIMD
architecture. The iPSC=860 at Stanford has 32 nodes interconnected by a five-dimensional
Hypercube circuit-switched network with e-cube routing. The communication is bidirectional, i.e.
two nodes can simultaneously exchange messages in both directions. The peak bandwidth of the
network is 2�8 MB s71 and the latency is 67ms for short messages (less than 100 bytes) and 177ms
for large messages.26 Each node is based on the 64 bit, 40 MHz i860 microprocessor with 16 MB of
memory (RAM). The i860 processor has an 8 kB instruction and an 8 kB two-way set-associative
data cache. Additionally, it has two pipelined floating point units, an adder and a multiplier. The
floating point units each can produce one result per clock cycle in 32 bit arithmetic for a peak
performance of 80 MFLOPS. For double-precision arithmetic the adder needs one cycle while the
multiplier needs two cycles to produce one result for a peak performance of 60 MFLOPS.

The Intel Paragon at San Diego Supercomputer Center (SDSC) has 400 nodes interconnected by a
2D worm-hole routed mesh network. Each node is a general-purpose (GP) node which has dual
50 MHz i860XP microprocessors—one as an application processor and the other as message
coprocessor (MCP). The architecture of the i860XP is very similar to that of the i860 chip except for
a higher clock rate and a larger data cache (16 kB for the i860XP). The peak floating point rates for
the i860XP microprocessor are 100 MFLOPS in single precision and 75 MFLOPS in double
precision. The network has (for OSF 1.2) a peak transfer rate of 90 MB s71 and latencies of the order
of 50 ms with the MCP enabled (the MCP can be used whenever computation and communication can
be overlapped; typically this can be achieved by using asynchronous message-passing calls).

The most commonly used programming model for Intel parallel computers is message passing,
whereby the user explicitly performs data partitioning and inserts communication calls to exchange
data between the processors. The most commonly used languages are C and Fortran77, with message
passing done using either NX or MPI libraries.
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4. PARALLEL IMPLEMENTATION

The fractional step algorithm naturally divides into three stages (equations (11)–(14)). By analysing
each stage, we can identify the communication and data dependence requirements of the algorithm
and develop a parallel implementation that optimizes these requirements. The first stage of the
algorithm involves computation of the partial derivatives (in the three directions) of the advective and
diffusive terms using known velocity and density data. This is a ‘parallel by point’ type of
calculation. In these calculations the computation at a grid point requires only values at the previous
time step at one or more grid points. Thus the only overhead is communication of the non-local data,
which can be performed any time before the computation. In the two horizontal directions,
derivatives are computed using Fourier spectral methods. These require global long-distance
communication to perform the FFTs. On the other hand, in the vertical direction, stencil-type
operations are performed which require nearest-neighbour communication. The cost of performing
the communication in the FFTs is much higher than that of nearest-neighbour communication and the
primary parallelization requirement of this stage is efficient implementation of the distributed FFTs.

In the second stage a tridiagonal matrix needs to be inverted for each wave number pair. The
computations in this stage are ‘parallel by line’.* The parallelization requirements of this stage are
the solution of a large number of independent systems of distributed tridiagonal equations. The
matrix is diagonally dominant (so no pivoting is required in Gaussian elimination) and also identical
for each wave number pair (it only depends on the vertical grid spacing andhnv�z; t�i�. Thus it can be
factored once and then used to solve for each right-hand side successively at each time step. This,
along with the fact that the matrix is asymmetric, makes the use of iterative methods such as
conjugate gradient algorithms unattractive and direct inversion method is preferable. The
requirements of the third stage (equation (14)) are similar to those of the velocity step and finally
the pressure correction step (equation (14)) is an almost ‘data-parallel’ computation.y

The above considerations guided the implementation strategy that was used in the code. This is
described next.

For parallel implementation the programming model is based on a node-only single-programme
multiple-data (SPMD) abstraction.27 This node-only model was chosen over the host node model as it
is scalable to large problem sizes and a large number of processors. A static 2D unipartitioning
scheme28 is used for data decomposition, i.e. the three-dimensional computational domain is divided
into P (total number of processors) non-overlapping subdomains (with equal numbers of points), each
of which resides in a separate processor (see Figure 3). The numberP is factored intoPx � Pz, the
numbers of processors used in the partitioning in thex (streamwise) andz (vertical) directions

Figure 3. 1D and 2D unipartition schemes

* Each grid point is coupled to the other grid points in a fixed direction.
y The only communication required is in evaluating thez-derivative off in the correction of vertical velocity.
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respectively. The processors exchange information at domain boundaries via message passing. 1D
data partitioning (either the vertical or the streamwise direction distributed) can be implemented
simply by setting the partition size in one of the directions to unity. All these schemes map efficiently
on both the Hypercube topology of the iPSC=860 and the mesh topology of the Paragon XP=S. The
motivations for choosing the unipartitioning scheme are discussed in the next section. The code is
written in F77; the NX library is used for message passing. Conversion of NX calls to MPI calls is
straightforward.

Parallel 2D FFTs are required in the explicit stage of the algorithm for the 2D unipartitioning
scheme; we use the transpose method. In this method the FFTs are performed on memory-resident
data; data in the distributed direction are brought into the local memory of a processor by performing
a distributed matrix transpose (we use the multiphase complete exchange algorithm26). An advantage
of this method is that it allows the use of efficient single-processor FFT library routines and separates
the computation and communication phases.

Based on the timing model for the complete exchange algorithm presented in Reference 26, we can
derive a simple speed-up model for the 2D parallel FFTs:

Sp �
1
P
�

2�P ÿ 1��l� N 2Pÿ2bb� dP�log2 P�=2�P ÿ 1��
6N2

�log2 N �tc

� �
ÿ1

: �37�

Herel is the message-passing latency,b is the number of bytes per word of data,b is the message-
passing bandwidth in words per second,d is the distance impact in seconds per dimension on the
Hypercube26 andtc is the computation cost per floating point operation. A comparison of this model
with measured timings on the iPSC=860 for 512p512 FFT is shown in Figure 4. The predictions of
the model are in good agreement with the measured timings; we see that low speed-up efficiencies
(less than 50%) are obtained with this algorithm when compared with the ideal (linear) speed-up
curve. The complete exchange algorithm requires an all-to-all communication between the
processors, which is the densest communication exchange between a group of processors.
Sivasubramaniamet al.29 show that on a Hypercube architecture, link bandwidths higher than
6 MB s71 are required onP > 4 processors to keep the network overheads below 30% for distributed
FFTs. On the iPSC=860, which has a peak bandwidth of 2�8 MB s71, communication overheads
result in 50% or lower efficiencies. Clearly, it is preferable to perform in-place FFTs as would be the
case in 1D vertical decomposition. As will be shown later, 2D partitioning is used in order to increase
the parallelism in the vertical direction operations. Note that on the Paragon (under OSF 1�2) the
bandwidths are in the range 35–40 MB s71 and better scalability for FFTs is achieved with this
algorithm.29

Figure 4. Performance of 2D parallel FFT on iPSC=860
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The tridiagonal systems of equations arising in both the second and third steps are solved using the
pipelined Thomas algorithm. A high degree of parallelism can be obtained from the Thomas
algorithm when several independent solves are performed. This is achieved by pipelining the forward
elimination (and back substitution) across the processors so that several solves are overlapped. The
message start-up and pipelining overhead delay trade-offs determine the optimum number of line
solves to be performed before a message is transmitted to the neighbouring processor.

A simple timing model can be derived for this algorithm which can be used to obtain an expression
for lopt, the optimum number of line solves per message:28

Tovr � 8Pz

�

Nz

Pz

�

lpTc � Pz�l� 4lpbb�; �38�

Tpip �
NxNy

Pxlp

�
N

z

Pz

�

8lptc �
NxNy

Pxlp
�l� 4lpbb�; �39�

Ttot � Tovr � Tpip �40�

) lopt �
NxNyl

Px�8Nztc � 4bbPz�

� �
s

: �41�

Here Tovr;Tpip and lp denote the cost in the overhead stage, the cost in the pipelined stage and the
packing factor (i.e. the number of line solves performed before a message is sent) respectively. In this
model we assume five floating point operations in the forward elimination and three in the back
substitution stage of the Gaussian elimination algorithm. Similarly, three words of data per solve are
transmitted in the forward elimination and one in the back substitution stage. Note that in this model
the local memory access times for loads and stores of various variables have been ignored.

The effect of the packing factor on the measured execution time for solving a system of tridiagonal
equations is shown in Figure 5 for a representative case on the iPSC=860 �Nx � Ny is the number of
independent systems to be solved, each of sizeNz � Nz). We see that the execution time drops rapidly
aslp is increased up to 4; further increase decreases it slowly (for very high values oflp the time will
start to increase), with the optimal value beinglp � 16 or 32. These are the values used in subsequent
timing measurements. This type of behaviour was also observed for other values ofNx;Ny andNz,
with optimal values increasing with increasing grid. The value oflopt predicted by the model (for the
case shown in Figure 5) is 30, which is quite close to the value determined on the basis of
measurements. For computational convenience and to ensure an integer number of line solves, values

Figure 5. Time (in seconds) versuslp (packing factor) for pipelined tridiagonal Thomas algorithm on iPSC=860;
Nx � Ny �Nz � 64. P is the number of processors
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of lp which are powers of 2 were used in actual simulations and timing measurements. In Figure 5 we
also see that an efficiency of roughly 81% is obtained when the number of processors is doubled (for
lp � 4); this drops to 50% for eight times as many processors. The timing model predicts somewhat
higher efficiencies.

5. SPEED-UP ANALYSIS OF MODEL PROBLEM

In order to evaluate the optimal partitioning scheme for this problem, a speed-up analysis of a simpler
model problem, namely the scalar transport equation (equation (3)), was performed. For a given
velocity field this equation is solved in two stages (equations (35) and (36)). The computational
characteristics of these stages are identical with those of the first two stages (equations (11) and (12))
of the fractional step algorithm. In the present spatial discretization method the solution of the
pressure Poisson equation (stage 3, equation (14)) is the least expensive step for serial (and parallel)
implementation and the total computational cost is dominated by the first two stages of the fractional
step algorithm. This stage requires inverting a tridiagonal system of equations for each wave number
pair to obtain the Fourier coefficients of pressure. Once the Fourier coefficients have been obtained,
they can be used to enforce discrete incompressibility directly in the wave number space (equation
(14)). Thus the pressure need not be computed in the physical space except for purposes of computing
statistical quantities involving the pressure (in turbulent flow simulations). Hence the performance
analysis of the scalar transport equation is representative of and relevant to the choice of partitioning
scheme for the fractional step algorithm.

We analysed three schemes, namely unipartitioning, multipartitioning and transpose partitioning
(see Figure 6), applied to the model problem. The distributed FFTs required in the unipartition and
multipartition schemes are assumed to be performed using the transpose method. The distributed
tridiagonal system of equations arising in the unipartition scheme (in the implicit stage) is assumed to
be solved using the pipelined Thomas algorithm. Note that for the multipartition scheme the Thomas
algorithm can be applied in a straightforward fashion without any load imbalance. In the transpose
partition both stages are performed in-place and a global data transpose is used between stages to
bring all the data required for a given stage to the local memory of the processor.

The speed-ups and speed-up efficiencies for the different schemes on a Hypercube architecture*
can be expressed as

Sp � 1=�1=P � Os�; �42�

SZ � Sp=P; �43�

Figure 6. Unipartition, multipartition and transpose partition schemes

* A Hypercube architecture is assumed to perform the complexity analysis of the global exchange algorithm for the distributed
matrix transpose. Analyses for other network topologies such as the mesh network can be done in a similar fashion.
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whereOs � Nums=Den represents the parallelization overhead for each data-mapping scheme. The
expressions forNums andDen are given below

Numuni � 8�Px ÿ 1�

�

Nz

Pz

�

l�
NxNy

P2
x

bb� d
�log2 Px�Px

2�Px ÿ 1�

� �

�
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Pxlp
� Pz � 4

 !

l
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� 3�P ÿ 1�l� 6�P ÿ 1�
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Numtrp � 2�P ÿ 1� l�
NxNyNz

P2
bb� d

�log2 P�P

2�P ÿ 1�

� �

� 4�l� NxNybb�; �46�

Den �

NxNyNz

P
�40 � 6�log2 Nx � log2 Ny��tc: �47�

HereNx;Ny andNz are the numbers of grid points in thex-, y- andz-direction respectively and the
other parameters are as before (see Section 2). Note that, as was the case in the analysis of the
pipelined Thomas algorithm, memory access times have not been included. The subscripts ‘uni’,
‘mul’ and ‘trp’ denote the unipartitioning, multipartitioning and transpose partitioning respectively.

The SZ predictions for the model problem using the machine parameter values for the iPSC=860*
are shown in Figure 7. The smaller grid is the typical grid used in large-eddy simulations and the
larger grid is typical of the ones in direct simulations. The results clearly indicate that
multipartitioning leads to very low efficiencies compared with the unipartition and transpose
schemes. The reason for this is that while multipartitioning eliminates the data dependence in the
solution of tridiagonal systems of equations, it significantly increases the amount and stages of

Figure 7.SZ predictions for model problem on iPSC=860 for coarse and fine grids

* We have used the values presented in Reference 26.
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communication required to perform the FFTs. Furthermore, it serializes the inherent parallelism in
the FFTs that is exposed by the 1D vertical unipartition and transpose schemes (groups of horizontal
planes reside in each processor and in-place FFTs can be performed in each such processor
independently).

For the two grids considered in Figure 7, the memory requirements of the Navier–Stokes solver are
such that a minimum of four processors are required for the smaller grid and a minimum of 64
processors are required for the larger grid (for 16 MB=node computers). Thus we compare the two
schemes for numbers greater than this minimum. For the smaller grid the unipartitioning shows a
higher efficiency because a 1D-z partition is used and the FFT’s are performed locally, with
communication and data dependence delays occurring only in the vertical operations. The transpose
partitioning, on the other hand, requires global communication in the transpose phase.

In the case of the larger grid a 2D unipartitioning* has to be used (see Section 6.2) in order to
improve the efficiency of the tridiagonal solver. Thus, for unipartitioning, distributed FFTs are
required in stage 1, leading to increased communication overhead. However, in the unipartition
scheme the matrix transpose (for FFTs) is performed only acrossPx processors whereas in the
transpose scheme it is performed acrossP processors. Thus for the unipartition scheme the cost of
FFTs is fixed with increasingP (Px fixed) and the nearly linear decrease inSZ is occurring owing to
increased overhead in the tridiagonal solver. For the transpose partitioning the total number of stages
(P71 on a Hypercube), as well as the data to be communicated, is higher in the global exchange
algorithm than for the unipartition scheme, resulting in poorer scalability forP greater than 64
(Figure 7). Furthermore, on a 2D mesh (i.e. on the Paragon) the global exchange would suffer greater
contention and require more stages than on a Hypercube.30

Thus, based on these predictions, over the range of problem and processor sizes that are of interest
to us for stratified turbulent channel flow simulations, we conclude that the unipartitioning scheme
should be superior to the transpose partition scheme and the former was therefore used in the parallel
implementation.

6. CODE VALIDATION AND GRID REFINEMENT STUDIES

The accuracy of the code was verified by computing the instantaneous growth rates and phase speeds
of small-amplitude Tollmien–Schlichting (TS) waves in an unstratified flow and comparing them
with the theoretical values. The results are presented in Table I. The 2D cases were run on a
4646256�x � y � z) and the 3D cases on a 8686128 grid. The box size was2ph � 2ph � 2h,
whereh is the channel half-depth. The growth rates in Table I are within 5% of the theoretical values.
The error in the perturbation energy (after one time period) as a function of the number of grid points

Table I. Comparison of computed and theoretical growth rates and frequencies of TS waves in unstratified
channel flow

Wave number Theoretical Computed

Recl kx ky Growth rate Frequency Growth rate Frequency

7500 1 0 0�002235 0�24989 0�002144 0�25004
7500 1 1 ÿ0�02178 0�29097 ÿ0�02229 0�30777
5000 1 0 ÿ0�0017503 0�26813 ÿ0�0017542 0�26838
5000 1 1 ÿ0�019902 0�32264 ÿ0�019399 0�32538

* Px � 4 gave the best results.
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in the vertical for the 2D (1, 0) Tollmien–Schlichting mode is shown in Figure 8. As expected, the
error is inversely proportional to the square of the number of grid points in the vertical (for
comparison a line of slopeÿ2 is plotted on the same graph). In thex-direction four points were used;
these are sufficient to exactly resolve this mode using Fourier functions.

We also performed large-eddy simulations of a pressure-driven (fixed pressure gradient) turbulent
channel flow with passive scalar (temperature) at Reynolds number 180 (based on friction velocity
and channel half-depth) and Prandtl number 0�71 (heated air). Two different grids were used: (i)
coarse grid 64664665 and 32 processors; (ii) fine grid 1286 1286 97 and 64 processors.* The
simulations were conducted on the Intel Paragon at San Diego Supercomputer Center. In the present
simulations the dynamic subgrid-scale model31 with Lilly’s least squares modification32 is used to
parametrize the SGS stresses and the extension to scalar transport equations developed by Moinet
al.33 is used to model the SGS heat flux. Isothermal boundary conditions for the temperaturey were
used in the simulations—a hot top wall (non-dimensional temperature 0�5) and a cold bottom wall
(non-dimensional temperatureÿ0�5). The simulation results were compared with the direct
numerical simulations of Kimet al.34 and Kim and Moin.35 The direct simulations were conducted on
a 1926 1606 129 grid (after de-aliasing) using a fully spectral (Fourier–Chebyshev) method; the
validity of the DNS results was established by comparisons with previous experimental results.34

The computational statistics of the LES runs are shown in Table II; the CPU time listed in the table
is the overall CPU time (this includes the time in the flow solver, the scalar solver, the subgrid-scale
model, the routines for computing run time stastistics of various turbulence quantities and the file I=O
modules).

In Figure 9 the mean velocity and temperature profiles are shown as a function of the distance from
the wall in local wall co-ordinates. The computed results show very good agreement with the DNS
results and are also in accord with the linear profile in the viscous sublayer and the log profile in the
core region of the channel. The good agreement between the LES and DNS results indicates that the
LES (even on the coarse grid) is resolving the mean quantities accurately. The resolved turbulence
intensities are compared with the DNS results in Figure 10. The large-eddy simulations predict a
somewhat higheru intensity and lowerv andw intensities, but the overall agreement is good. This
behaviour has also been observed by others.36 The maximum deviation between the LES and DNS

Figure 8. Accuracy of code in computing growth of (1, 0) TS mode in channel flow;Recl � 7500, T� 25�13

* Note that these are the grid sizes before de-aliasing is applied.
y We have assumed a linear equation of state relating the densityr* to the temperatureT.
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results occurs in the vertical turbulence intensity; this is expected because the vertical componentw,
which largely depends on small scales (particularly close to the walls), is most sensitive to grid
resolution. From the figure we can also infer the improvements as a result of grid refinement and can
conclude that the numerical results are converging (to the exact result) as the grid resolution is
increased.

The code has been used to perform simulations of stably stratified turbulent closed (both surfaces
are no-slip) and open (free-slip top surface) channel flows to study the effects of stratification on near-
wall and near-free-surface turbulence. Simulations with various Richardson and Reynolds numbers
and temperature (density) boundary conditions have been performed. The results show consistent
trends as to the effects of stable stratification on channel turbulence. A large database has been
generated which we are currently studying in greater detail to develop better understanding of
stratified flows and to evaluate various turbulence closures. Here we shall present some results of grid
refinement studies which we were performed to ascertain the adequacy of grid resolution.

The simulations for the closed channel were conducted atRet � 180 andPr � 0�71 (heated air);
stable stratification was maintained by fixing the wall temperatures (heated top wall and cold bottom
wall). Large-eddy simulations over a range ofRit (0–60) were performed on a 646 64665 grid. A
fine LES (1286 1286 97 grid, 64 processors,Rit � 18) and a DNS (1286 2566 160 grid, 64
processors,Rit � 45) were also performed to study the accuracy of the coarse grid runs and to
accurately compute higher-order statistical quantities. TheRit � 18 flow is a moderately stratified
flow in which turbulence is active but suppressed compared with the unstratified case, while in the

Table II. Computational statistics for LES runs of unstratified channel flow

Integration time Dt CPU time
Grid (h=ut units) (h=ut units) Time steps (h)

646 64665 14�0 2�5610ÿ3 5600 15�0
1286 1286 97 8�5 1�25610ÿ3 6800 35�0

Figure 9. Comparison of LES results with DNS results: (a) mean velocity, comparisons with DNS of Kimet al.;34 (b) mean
temperature, comparisons with DNS of Kim and Moin35
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Rit � 45 case the flow relaminarizes and the turbulence is completely damped out. The simulations
were all started with an initial flow field obtained from simulation of the passively heated (i.e.
unstratified) turbulent channel flow.

The one-dimensional energy spectra of vertical kinetic energy forRit � 0 and 18 flows are shown
in Figure 11 atz

�

� 37 (in the buffer layer) andz
�

� 144 (close to the channel centre). Stable
stratification directly reduces the vertical kinetic energy (owing to its conversion to potential energy),
making the vertical turbulent fluctuations most sensitive to grid resolution. We note that in the buffer

Figure 11. Comparison of 1D spectra of vertical kinetic energy (at two vertical locations) between unstratified and stably
stratified channel flow LES;Ret � 180;Pr � 0�71

Figure 10. Comparison of turbulent intensities with DNS of Kimet al.34

HYBRID SPECRAL FINITE DIFFERENCE SIMULATIONS 1145

# 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL24: 1129–1158 (1997)



layer only the larger vertical scales are suppressed, while near the channel centre all the vertical
scales are suppressed. For both the stratified and unstratified cases the spectra show adequate
resolution, as indicated by the fact that the energy at low wave numbers is two to three decades higher
than at high wave numbers and there is no evidence of energy pile-up at high wave numbers. The
distributions of RMS resolved TKE and Reynolds shear stress are shown in Figure 12; again, good
agreement between the two grids is evident. The individual components of turbulence intensity show
the same trends as observed in the unstratified case:urms is slightly overpredicted whilevrms andwrms

are underpredicted on the coarse grid. As expected, the coarse grid also slightly underpredictshu0w0

i,
but the overall agreement with the fine grid result is good. The unstratified case yields similar
comparisons between the fine and coarse grid simulations (see Figure 10).

The comparison between the DNS and LES results for the strongly stratified flow is presented in
Figure 13. The two quantities shown (both have been non-dimensionalized) are (i) the instantaneous
plane-averaged wall shear and (ii) the available potential energy function, which is defined as
APEF � ÿ

1
2 Rithr

02
i=�dhri=dz�. Here hr02i is the instantaneous density variance andhri is the

instantaneous mean density.APEF is an important concept in stratified flows and represents the
potential energy of density fluctuations available for conversion to kinetic energy (by the process of
adiabatic redistribution of mass to a statically stable state37). Under very strong stratification both
these quantities decay rapidly as the flow relaminarizes. The results in Figure 13(a) show very good
agreement between LES and DNS at all times. Note that the initial values are slightly different as the
initial fields for the coarse and fine grids are instantaneously different (both were obtained from
corresponding unstratified runs).

The decay ofAPEF, which is more sensitive to grid resolution than is wall shear, also shows good
agreement between the LES and DNS results fort < 2�5; for t > 2�5 the agreement is not so good.
This is probably due to the fact that at later times a significant restratification process, marked by a
gravity-induced reconversion of potential energy into vertical kinetic energy and counter-gradient
buoyancy fluxes, takes place. Analysis of DNS data38 shows that the largest scales of motion are
strongly suppressed (at later times) and the peak of buoyancy flux co-spectra shifts to smaller scales.
Since these scales are not resolved in the LES calculation, discrepancies in the decay rate ofAPEF
occur.

Figure 12. Distribution of (a) RMS resolved TKE and (b) Reynolds shear stress (resolved plus subgrid-scale) on coarse and fine
grids in LES of stably stratified channel flow;Ret � 180;Rit � 18;Pr � 0�71
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7. PERFORMANCE RESULTS

In this section the results of timing measurements of the parallel implementation are presented. These
measurements were made on a 32-node iPSC=860 Hypercube computer at Stanford and the 400-node
Paragon XP=S at SDSC. The results were obtained by advancing the solution for 50 time steps (for
each run) to obtain averaged execution times. All the times presented are for direct numerical
simulation of a homogeneous fluid and do not include the time required for solution of the scalar
transport equation and the subgrid-scale model (in large-eddy simulations).* The runs were
performed in dedicated batch queues and the longest of the elapsed times was taken as the parallel
execution time.y The velocity field was initialized as low-amplitude (5% of mean) divergence-free
random perturbations superposed on a laminar flow profile. All the times are for 64 bit arithmetic
(double-precision) unless otherwise stated. We first present overall performance results, then detailed
timings.

7.1. Overall performance

The algorithm was evaluated both in terms of scalability as well as in terms of absolute
performance, i.e. execution times.z Constant problem size (or unscaled speed-up) scaling was used to
measure the scaling characteristics of the algorithm. This was motivated by the fact that the problem
size (grid) requirements for LES and DNS computations are dictated by the fluid dynamic

Figure 13. Comparison of (a) wall shear and (b) available potential energy function between DNS and LES in strongly stratified
channel flow;Ret � 180;Pr � 0�71

* The time required for solution of the scalar transport equation is approximately equal to one-third of the times required in the
first and second stages of the fractional step algorithm. The time required in the subgrid-scale model depends on the model used
to parametrize the subgrid-scale stresses.
y Since there is no global clock on the iPSC=860 and Paragon, the time on each processor was measured separately and the
maximum value chosen; owing to slight load imbalances and different clocks, the measured times differ on all processors.
z Since the solution method is based on a direct solver, the execution time and rate of execution (MFLOPS) are equivalent
measures of absolute performance. Note that this is not the case for iterative solvers, where the rate of convergence (or the
number of iterations required to reach a certain tolerance level) also needs to be considered in evaluation the absolute
performance.
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parameters, i.e. the Reynolds, Prandtl and Richardson numbers. Constant problem size scaling is thus
the appropriate metric to evaluate the efficiency of parallel implementation and determine the
problem granularityx for the grid sizes chosen based on the resolution requirements of the
simulations.

The measured relative speed-up efficiencySZ versus the number of processors,P, is shown in
Figures 14 and 15 on iPSC=860 and Paragon respectively for different grids.SZ is defined as
�Tmin=TP� � �Pmin=P�, wherePmin is the minimum number of nodes on which a given problem size
fits, Tmin is the CPU time forPmin processors andTP is the measured time forP processors. Since the
problem sizes are too large to run on a single node, the speed-up is measured with respect to the
minimum number of processors on which the problem can be run. An estimate of the single-processor
time can be made (for the iPSC=860) using the procedure outlined in Reference 39, but it requires
accurate measurements of the communication, computation and idle time of each processor. This is a

Figure 15. Speed-up efficiencySZ versus number of processors for Paragon XP=S (OSF 1�2)

Figure 14. Speed-up efficiencySZ versus number of processors for iPSC=860 Hypercube

x For a given problem size, owing to the algorithmic and hardware scalability limits, there is a limit to which we can increase
the number of processors.
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complicated and error-prone task for the algorithm considered here. The relative speed-up efficiency
is easier to compute and gives an accurate indication of the scalability of the algorithm for the
problem size of interest.

For a fixed number of processors, as the grid size is increased, the efficiency also increases,
indicating that the ratio of communication to computation decreases with increasing grid size and the
algorithm scales with the grid size. From the figures we also see that as the number of processors is
increased, the efficiency drops faster for smaller-sized problems. This is because the communication
time increases faster than the execution time decreases. We note that an efficiency of up to 91% on
doubling the number of processors and up to 60% on an eightfold increase in the number of
processors is obtained. Also as expected, the efficiency is higher on the Paragon because the
communication on it is faster than on the iPSC=860, while the computation is nearly identical for the
two machines (compare the 64664665 grid results in Figures 14 and 15). The scaled speed-up of
the algorithm can also be inferred from the plots; we see thatSZ decreases by only a small amount
when the number of processors is increased as the grid size is increased, implying a nearly fixed
execution time as required by the fixed execution time (i.e. scaled speed-up) scaling. The results in
Figure 16 confirm that a good fixed execution time scaling is obtained in the present implementation.

The algorithm was also implemented and vectorized on a Cray-YMP. The performance on a
single-processor Cray-YMP is shown in Table III. As expected, the performance increases with the

Figure 16. Scaled speed-up on (a) iPSC=860 Hypercube and (b) Paragon XP=S

HYBRID SPECRAL FINITE DIFFERENCE SIMULATIONS 1149

# 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL24: 1129–1158 (1997)



grid size (increasing vector length) and peaks at 185 MFLOPS (or about 56% of theoretical peak
performance) on the grids that were tested. Even for the smallest grid a performance of 153 MFLOPS
is obtained. Note that as the grid size increases,CPUn (the CPUtime per time step per grid point) is
increasing as well; this is because for FFTs the operation count per grid point isO�log2Nx � log2Ny�,
so the number of operations increases logarithmically with the grid size. However, with increasing
grid size the performance also increases and as a result the values ofCPUn for 12861286193 and
12862566193 grids are almost identical. On a Cray C-90 these timings will be approximately a
factor of two to three faster.*

A comparison between Cray-YMP and ParagonCPUn timings is presented in Table IV for several
grids. This is a good measure of performance, since in this way the performance of the algorithm can
be measured for different grids. From this table it is clear that the performance on the Paragon is
strongly dependent on the problem size, in contrast with the YMP where it is fairly independent of the
grid size. We see that the performance on approximately 32 processors of the Paragon is equivalent to
that of a single-processor YMP. Furthermore, as expected, for a fixed number of processors,CPUn

decreases as the grid size is increased (e.g. compareCPUn for 64 processors) and the best times are

Table III. Measured CPU time per time step per
grid point and MFLOPS on CRAY-YMP (single

processor) for different grids

Grid CPUn �ms� MFLOPS

64664665 14�94 153
128664697 14�67 163
1286646193 15�48 154
12861286193 18�42 174
1286256697 18�38 185

* The speed-up will be dependent on the problem size; for larger problem sizes for which the average vector length is greater
than 128 (the asymptotic vector length for the Cray C-90) the speed-up will be a factor of three.

Table IV. Performance comparison between Paragon (OSF 1�2) and Cray-
YMP=1 timings

Cray-YMP
Paragon

Ratio to
Grid CPUn�ms� P CPUn�ms� YMP=1

646 646 65 14�94 4 81�0 0�18
8 46�0 0�32

16 28�60 0�52
646 646 193 15�0 8 41�2 0�37

16 23�0 0�65
32 17�1 0�88

1286 646 193 15�50 16 21�7 0�71
32 12�7 1�22
64 8�23 1�88

1286 1286 193 18�40 64 7�83 2�35
128 4�64 3�97

1286 2566 193 18�40 64 6�38 2�88
128 3�45 5�33
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obtained for the largest grid sizes. For the grid sizes considered here, with 128 processors, the parallel
code runs up to five times faster than the Cray-YMP implementation.

In Figure 17 the MFLOP ratings of the YMP have been used to compute YMP equivalent ratings of
the Paragon. Speeds of up to 1 GFLOPS were obtained on 128 processors of the Paragon. From the
plot it is also clear that a consistent scalability over the range of problem and processor sizes
considered is obtained. An indication of this is given by the slopes of the curves (in Figure 17), which
are not decreasing or levelling out as the problem and processor sizes are increased.

The MFLOPS=node obtained on the Paragon are shown in Figure 18. This is another measure of
scalability,6 because if, over a certain range of processor numbers, it reaches a constant value, then
the total performance scales linearly over that range. The tendency of the curves to flatten out can be
seen clearly in Figure 18. The performances vary between 3 and 9 MFLOPS=node, i.e. 8%–10% of
theoretical peak performance* of the Paragon. In contrast, a performance of over 50% of theoretical
peak performance was obtained on the CRAY-YMP=1. Such low performances (in terms of
theoretical peak performance) are not uncommon on present-generation massively parallel computers
for CFD coses.4,40 The primary reason for the large discrepancy between peak and actual
performance is the large difference between the floating point rate of the i860XP microprocessor and
the memory bandwidth—both on-chip, i.e. CPU local memory bandwidth,41 as well as remote, i.e.
communication bandwidth. The small size of the on-chip data cache and the long memory access
times (compared with floating point operations) significantly limit the single-node performance on
the Paragon. Realizable communication bandwidths of 45–50 MB s71 (compared with the hardware
maximum of 200 MB s71) and latencies of the order of 50ms under OSF 1.242 limit the achievable
scalability of the applications. As will be shown later, the single-node performance is the main reason
for the poor performance on smaller grids, whereas for larger grids the communication performance
also significantly affects the overall performance.

The CPU time per time step per grid point,CPUn, is shown in Table V for the iPSC=860 and
Paragon. The timings on the Paragon are on average 30%–50% faster than those on the iPSC=860,
with the higher end improvements observed mostly for problems where 2D partitioning was used.
The reason for this is presented in the next subsection along with results of detailed timing
measurements.

* The peak performance of the i860XP chip is 76 MFLOPS for 64 bit arithmetic.

Figure 17. Cray-YMP=1 equivalent MFLOPS on Paragon (OSF 1�2)
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7.2. Detailed performance

In Section 3 the speed-up analysis of the model problem showed that the type of data partitioning
affects the extractable parallelism, dependence overhead and communication costs and requirements.
The results showed that the unipartition scheme gives better efficiencies than the multipartition and
transpose partition schemes. In this subsection we shall present comparisons for the three types of
unipartitionings, namely the 1D-x, 1D-z and 2D schemes, and also analyse the performance of the
individual stages of the fractional step algorithm.

In the computation of 2D FFTs by the transpose method the communication cost scales as
�Px ÿ 1�NxNy=P2

x , which is approximately the total number of words of data transferred (inPx ÿ 1
transmissions) between each processor in thex-direction. On the other hand, the communication cost
for finite difference operations in the vertical direction scales asO�NxNy=Px�. Clearly, more
communication is required in spectral operations than in finite difference operations. Furthermore,
while only near-neighbour communication is needed for vertical operations, the global exchange
algorithm requires long-distance data exchange. Thus, despite dependence delays in vertical
decomposition, the communication in horizontal partitioning makes it more costly than vertical
partitioning. For the same number of grids (withNx � Ny � Nz) and the same number of processors,
1D-x partitioning is significantly inferior to the other two decompositions.

From the analysis presented in Section 3, the communication times for evaluation of the explicit
right-hand side for the model problem can be estimated as

�T2d
comm�rhs � 8�Px ÿ 1�

�

Nz

Pz

�

l�
NxNy

P2
x

bb

� �

� 4 l�
NxNy

Px
bb

� �

�48�

Figure 18. MFLOPS=node on Paragon (OSF 1�2)

Table V. Measured CPU times (in seconds) on iPSC=860 (I)
and Paragon (P) for different grids and processors (denotedP)

Grid P CPUn�I� CPUn�P�

326 326 33 2 2�48610ÿ4 1�856 10ÿ4

4 1�51610ÿ4 1�416 10ÿ4

8 1�07610ÿ4 1�336 10ÿ4

646 646 65 4 1�26610ÿ4 8�1610ÿ5

8 7�7 610ÿ5 4�6 6 10ÿ5

16 4�90610ÿ5 2�866 10ÿ5
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and

�T1dz
comm�rhs � 4�l� NxNybb� �49�

for the 2D and 1D-z unipartitionings respectively. The first term in equation (48) represents the
communication time in FFTs and the second term is the communication time in finite difference
derivatives. It is easy to see that for typical problem sizes, such as the ones presented in Section 6.1,
�T2d

comm�rhs > �T1dz
comm�rhs, while the computation times are almost identical. Consequently, the 1D-z

scheme is expected to yield a better overall time as well as speed-up for the first stage of the
fractional step algorithm.

For the second stage (i.e. the solution of the distributed tridiagonal system of equations) the
communication times for the model problem are

�T2d
comm�tri �

NxNy

Pxlp
� Pz

 !

l�
4NxNy

Px
� 4Pzlp

� �

bb; �50�

�T1dz
comm�tri �

NxNy

lp
� P

 !

l� �4NxNy � 4Plp�bb; �51�

) �T2d
comm�tri �

�T1dz
comm�tri

Px
: �52�

The above equations indicate that for this stage the 1D-z partitioning is inferior to the 2D scheme
and will give poorer scalability in comparison with the 2D scheme as the number of processors
(partitions inx) is increased. For the computation of tridiagonal solves the 2D partitioning exposes a
higher explicit parallelism (Px solves can go completely in parallel) and decreases the amount as well
as frequency of data each processor transmits to its nearest north=south neighbour, thereby reducing
both the transfer and message start-up times in the communication.

In Figure 19 the CPU time per step is shown for 1D-z and 2D partitioning* (Px � 4) for different
grids. The results in Figure 19 indicate that up to 16 processors the 1D-z scheme gives better timings
than the 2D scheme. However, for a fixed problem size the 2D partitioning has better scalability and
for 32 processors (and higher on the Paragon) it yields lower times compared with 1D-z partitioning.
The figure also shows that for both partitionings a nearly linear scaled speed-up is obtained whenNz

is doubled, i.e. the execution time changes little when both the problem size and the number of
processors are doubled. In fact, the times for grids 2 and 3 are nearly identical, indicating a higher
contribution of communication start-up overhead (latency cost) to the total communication cost for
grid 2. Our results on these (and other) grids also showed that 1D-zpartitioning is usually better when
Nz/Pz is relatively high (see equations (48) and (49)).

The results for the individual stages of the fractional step algorithm are shown in Figure 20 (on the
iPSC=860). We can see clearly that for the right-hand-side calculation the 1D-z scheme has a lower
execution time and better speed-up than the 2D scheme. However, as expected (based on the
discussion presented above), for the velocity and pressure steps it shows inferior speed-up compared
with the 2D scheme. In fact, for 32 processors the velocity step becomes the most expensive of the
three stages when 1D-z partitioning is used (Figure 20). For the grids on which we performed the
simulations, forP > 32 in all cases the 2D scheme was used as it gave better performance (lower
execution time) than the 1D-z scheme. From Figure 20 we also see that the pressure step is much less

* The 2D partitioning was evaluated for several different values ofPx andPz. On the 32-node iPSC=860,Pz � 4 was found to
give the best results.
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expensive than the first two stages of the algorithm, thus validating the assumption made for the
analysis presented in Section 4.

A detailed breakdown of the various stages is shown in Table VI. For both grids, as expected,
increasingPz (with Px fixed) increases the time in the second and third stages. The second stage
requires 42% of the total time with just four processors (for the smaller grid) and an increase inPz

increases this time to 57% of the total time (for 16 processors) with a corresponding decrease in the
time for the first stage. For the larger grid the first stage is the dominant stage, as distributed FFTs are
required. However, the second stage still takes a substantial percentage of the total time. These results
show consistency, as the characteristics of the algorithm (expressed by the amount of time each stage
requires) are preserved by the parallel implementation, when the grid sizes and processor sizes are
varied over a large range (such as those in Table VI).

On parallel machines it is often advantageous to use single-precision (32 bit) as opposed to double-
precision (64 bit) arithmetic. With 32 bit operands the amount of data to be transferred and the
memory requirements are reduced by half, leading to better performance and scalability. In many
algorithms this may not be possible, but the present algorithms is numerically well-conditioned and
32 bit precision is adequate. The effect of word length on performance is shown in Table VII. For the
smaller grid the performance improvement by using 32 bit arithmetic is primarily due to increased
computational speed, as for this grid the communication workload is significantly less than the
computation workload. For the larger grid we see almost 50% improvements; for this case the
communication time is a larger fraction of the total time and consequently the use of single-precision
arithmetic has a bigger effect on performance compared with the smaller grid.

Figure 19. CPU time (in seconds) per time step versus number of processors on iPSC=860 for different grids: ————,
64664664; - - - - -, 646646128, —-—-—, 1286646128; (a) 1D-z partitioning; (b) 2D partitioning,Px � 4
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Figure 20. CPU time (in seconds) per time step versus number of processors on iPSC=860 for different stages: 646646128
grid; ————, total; - - - - -, RHS; —-—-—, velocity step, —--—, pressure step; (a) 1D-z partitioning; (b) 2D partitioning,

Px � 4

Table VI. Breakdown of different stages as percentage of total
execution time on Paragon (OSF 1�2)

RHS VT PT
Grid P (%) (%) (%)

646 646 65 4 45�0 42�0 13�0
Px � 1 8 38�0 49�0 13�0

16 29�0 57�0 14�0
1286 2566193 64 54�0 35�0 11�0
Px � 4 128 51�0 37�0 12�0

Table VII. Comparison of 32 bit versus 64 bit
performance on Paragon (OSF 1�2)

Grid P
T �64 bit�=T�32 bit�

64664665
4

1�22
Px � 1
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8. CONCLUSIONS

A scalable parallel algorithm for spectral finite difference simulation of turbulent stratified flows was
implemented and its performance was evaluated. The performance was found to depend strongly on
the problem size and the type of data decomposition. Three types of partitioning were investigated for
a model problem and the analysis showed that multipartition schemes are ill-suited for this algorithm.
While here the analysis was used to evaluate the partition schemes on the iPSC=860, it is general and
applicable to any distributed memory message-passing architecture. It thus provides an analytical
framework to evaluate the communication overheads of different schemes on different architectures
and thus obtain useful information on the suitability or non-suitability of a particular decomposition
strategy on a given machine. This procedure is very useful, as comparison based on actual
implementation of the different schemes is non-trivial, particularly for large codes such as the present
one. Based on the analysis, we concluded that unipartitioning schemes (1D and 2D) are optimal for
this problem and unscaled speed-up efficiencies of up to 91% were obtained in actual
implementation. The scalability was evaluated for several different grids over a range of 8–128
processors and consistent speed-up efficiencies were achieved. The performance was compared with
a well-optimized implementation on the Cray–YMP; on 128 processors of the Paragon, speeds up to
five times faster than on a single processor of the Cray-YMP were obtained. Performance between
8% and 10% of theoretical peak performance was obtained on the Paragon. The comparison between
the iPSC=860 and Paragon showed 30%–50% faster timings on the Paragon.

Three different unipartitioning schemes were investigated and the performance of the individual
stages of the algorithm was studied in detail. It was found that while 1D-z partitioning was better for
the first stage, 2D partitioning was better for the second and third stages of the algorithm. The speed-
up analysis presented for the model problem was used to provide explanations for these observations.
The effect of word length on performance was also investigated and the results were found to be
consistent with the computation and communication characteristics of the method. A careful study of
the numerical accuracy and adequacy of the grid resolution in simulations of stably stratified
turbulent channel flows was also performed. The results established the validity and correctness of the
code.

On parallel machines the mapping of the communication pattern of the algorithm to the processor
topology is important and performance metrics that are used for sequential algorithms (total number
of floating point and memory operations) need to be altered. The data dependencies in the algorithm,
communication and synchronization cost and load balancing need to be considered in the evaluation
of a parallel algorithm. The different stages of the algorithm may require different partitioning
schemes and trade-offs between these schemes have to be analysed. Finally, while it is hard to
quantify, the programming aspect of various implementation strategies also needs to be considered in
the development (porting) of application codes on (to) parallel machines.
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